Phase-Shift High-Speed Valve for Switch-Mode Control
نویسندگان
چکیده
Hydraulic applications requiring a variation in the speed or torque of actuators have historically used throttling valve control or a variable displacement pump or motor. An alternative method is switch-mode control that uses a high-speed valve to rapidly switch between efficient on and off states, allowing any hydraulic actuator to have virtually variable displacement. An existing barrier to switch-mode control is a fast and efficient high-speed valve. A novel high-speed valve concept is proposed that uses a phase shift between two tiers of continuously rotating valve spools to achieve a pulse-width modulated flow with any desired duty ratio. An analysis of the major forms of energy loss, including throttling, compressibility, viscous friction, and internal leakage, is performed on a disk spool architecture. This analysis also explores the use of a hydrodynamic thrust bearing to maintain valve clearance. A nonoptimized design example of a phase-shift valve operating at 100 Hz switching frequency at 10 l/min demonstrates an efficiency of 73% at a duty ratio of 1 and 64% at 0.75 duty ratio. Numerous opportunities exist for improving this efficiency including design changes and formal optimization. The phaseshift valve has the potential to enable switch-mode hydraulic circuits. The valve has numerous benefits over existing technology yet requires further refinement to realize its full potential. DOI: 10.1115/1.4002706
منابع مشابه
Research of Intake Valve Deactivation on Engine Performance
In this paper, the effect of the Intake Valve Deactivation (IVDA) on engine performance is investigated in detail. Based on an optimization platform with Genetic Algorithm (GA) and engine thermodynamic model, the characteristics of the engine volumetric efficiency and pumping loss were studied under the cam-drive, Single Intake Valve (SIV) and Dual Intake Valves (DIV) operating modes, and the e...
متن کاملA Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer
This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...
متن کاملOn Fluid Compressibility in Switch-Mode Hydraulic Circuits - Part I: Modeling and Analysis
Fluid compressibility has a major influence on the efficiency of switch-mode hydraulic circuits due to the release of energy stored in fluid compression during each switching cycle and the increased flow rate through the high-speed valve during transition events. Multiple models existing in the literature for fluid bulk modulus, the inverse of the compressibility, are reviewed and compared with...
متن کاملSecond Order Sliding Mode Observer-Based Control for Uncertain Nonlinear MEMS Optical Switch
This paper studies theuncertain nonlinear dynamics of a MEMS optical switch addressing electrical, mechanical and optical subsystems. Recently, MEMS optical switch has had significant merits in reliability, control voltage requirements and power consumption. However, an inherent weakness in designing control for such systems is unavailability of switch position information at all times due to t...
متن کاملA Novel Method for Commutation Torque Ripple Reduction of Four-Switch, Three-Phase Brushless DC Motor Drive
This paper presents an original study on the generated torque ripples of phase commutation in the Four-Switch, Three-Phase Inverter (FSTPI) Brushless DC (BLDC) motor drive which is suitable for low cost applications. Analytic values of torque ripple and commutation duration are obtained for different operation conditions. Moreover, limitation on the speed range operation caused from splitti...
متن کامل